Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Yi Chuan ; 44(10): 926-936, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36384728

Congenital generalized lipodystrophy (CGL) is an extremely rare genetic disease mainly characterized by absence of whole-body adipose tissue and metabolic dysfunctions such as insulin resistance, diabetes mellitus, hypertriglyceridemia, hepatic steatosis, and acanthosis nigricans. In this study, we reported a novel case of a young woman patient with CGL. The patient came to the hospital for early-onset lipodystrophy and diabetes. She was 19-year-old with a height of 160 cm, a weight of 46 kg, BMI of 17.9 kg/m2, and a serum leptin level of 0.14 µg/L. Genomic DNA was extracted from blood samples of the patient and her family members, including her mother, father and brother. Genetic analysis revealed compound heterozygous mutations of the BSCL2 gene (c.560A>G and c.565G>T) in the patient. Her father carried a heterozygous mutation (c.565G>T), and her mother carried a heterozygous mutation (c.560A>G) in the BSCL2 gene. The mutant p.Y187C plasmid was transfected into HEK293T cells. The protein expression of SEIPIN and its interaction with glycerol-3-phosphate acyltransferase (GPAT3) were observed to be reduced. In addition, based on primary cultured skin fibroblasts from the patient, SEIPIN protein was decreased, and lipid droplets were much smaller when fatty acid was stimulated compared with those observed from healthy subject controls. However, histone deacetylase inhibitors (HDACis) was found capable of rescuing SEIPIN protein in fibroblasts of the patient. In addition, we further summarized and discussed gene mutations of BSCL2 reported in the current literature. Collectively, these findings have expanded the clinical phenotype and pathogenic gene spectrum of CGL, which might help clinicians to achieve better management of lipodystrophy.


GTP-Binding Protein gamma Subunits , Lipodystrophy, Congenital Generalized , Lipodystrophy , Female , Humans , Male , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , HEK293 Cells , Lipodystrophy/genetics , Lipodystrophy/congenital , Lipodystrophy, Congenital Generalized/genetics , Lipodystrophy, Congenital Generalized/metabolism , Mutation
2.
Yi Chuan ; 44(10): 967-974, 2022 Oct 20.
Article En | MEDLINE | ID: mdl-36384732

Glucose metabolism plays a central role in energy supply and metabolism regulation in various tissues and organs. Besides, insulin is the sole hormone lowering blood glucose in the body, and islet function and insulin sensitivity are the key steps modulating glucose metabolism. Since the development of glucose clamp technology, it has been recognized as the gold standard for evaluating insulin metabolism. The main categories include hyperinsulinemia-euglycemia clamp, hyperglycemia clamp, and hyperinsulinemia-hypoglycemia clamp. These can be done on either anesthetized mice or conscious and unrestricted mice. This protocol focuses on the establishment and operation of the mouse glucose clamp technique, including preparation of instrument consumables, surgical operations, clamping procedures, and precautions, serving as reference and guidance.


Hyperinsulinism , Insulin Resistance , Mice , Animals , Glucose Clamp Technique , Insulin/metabolism , Blood Glucose/metabolism
3.
Yi Chuan ; 44(11): 1063-1071, 2022 Nov 20.
Article En | MEDLINE | ID: mdl-36384998

Glycogen storage disease type V is an autosomal recessive genetic disorder caused by muscle glycogen phosphorylase (PYGM) deficiency, which is characterized by exercise intolerance, second wind phenomena and high level of serum creatine kinase. In this study, we reported a Chinese young man with glycogen storage disease type V, with lower extremity weakness after exercise, increased creatine kinase, and slight fat infiltration in the posterior group of thigh muscle by magnetic resonance imaging (MRI). The proband had complex heterozygous PYGM disease-causing mutations, including c.308T>C (p.L103P) variant transmitted from the mother and c.260_261delCT (p.S87Ffs*23) from the father, of which the former was a novel PYGM mutation. This study enriched the PYGM pathogenic gene mutation spectrum, contributed to improve clinicians' understanding of glycogen storage disease type V and provided a reference for further genetic study of the disease.


Glycogen Phosphorylase, Muscle Form , Glycogen Storage Disease Type V , Humans , Male , Creatine Kinase/genetics , Genetic Testing , Glycogen Phosphorylase, Muscle Form/genetics , Glycogen Storage Disease Type V/diagnosis , Glycogen Storage Disease Type V/genetics , Glycogen Storage Disease Type V/pathology , Mutation
...